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Resumen: El estudio del calor y de su propagación en distintos medios ha sido de interés 
para la comunidad científica desde hace varios siglos. En este trabajo se presenta, de manera 
clara y concisa, un esquema general para la modelación analítica de la propagación del calor. 
En particular, se analiza la distribución de temperaturas en un sólido cúbico aislado 
sometido a una fuente de calor constante en estado estacionario, desarrollando los modelos 
correspondientes bajo las condiciones iniciales y de frontera más comunes. Para el caso del 
sólido aislado se consideran dos escenarios representativos de distribuciones iniciales de 
temperatura y se estudia su evolución temporal. 

Palabras clave: modelación matemática; ecuación del calor; gradiente temperatura; hueco 
térmico. 

 

1. Introducción 

El estudio del calor y otras magnitudes físicas ha traído como consecuencia, el 
desarrollo de un marco científico y eficaz por medio del cual se pueda reproducir 
algunos fenómenos físicos en forma controlada. La mayoría de las veces no es 
posible estudiarlo de manera directa, ya que depende de varios factores sobre los 
cuales no se puede tener control, y que en ocasiones quedan fuera del alcance del 
experimentador [1]. Tales factores pueden ser de índole económica, involucrar 
materiales aún no explorados, requerir condiciones ideales que no se presentan 
cotidianamente, o implicar la falta de muestras específicas, entre otros. Por estas 
razones, el científico se ve obligado a reproducir los fenómenos bajo condiciones 
restringidas. Con el desarrollo de la tecnología, hoy en día existen diversos recursos 
para lograrlo, como computadoras y software especializado [2,3]. 

En situaciones como las anteriormente descritas, es preciso y necesario recurrir 
al concepto de modelación [1], [4,5]. La modelación permite reproducir un 
fenómeno físico que no puede ser estudiado de forma directa. Desde luego, siempre 
representa una aproximación a la situación real. No obstante, aunque el modelo está 
sustentado en lógica matemática y sea consistente con los modelos aceptados hasta 
la fecha, la experimentación sigue siendo el criterio que determina su validez [6-8]. 
Ejemplos notables de este esquema en particular en la Física [9] incluyen la 
predicción de la antimateria a partir de las ecuaciones de Dirac [10], las ondas 
gravitacionales [11] o el bosón de Higgs [12]. 

En este contexto, en el presente trabajo se propone el modelo para el estudio del 
calor, que hoy en día es un esquema bien conocido pero no con la suficiente 
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transparencia y con la concisidad en la deducción de sus principios fundamentales 
y que sea claro de abordar.  

Este marco teórico permite ofrecer un primer acercamiento al estudio de 
diversos materiales que brindan una oportunidad idónea para analizar fenómenos 
físicos complejos bajo condiciones delimitadas, considerando al calor como una de 
sus características sobresalientes. La mayoría de materiales se consideran como un 
sistema multiparamétrico en el que intervienen procesos térmicos y mecánicos, 
susceptibles de ser modelados mediante métodos matemáticos y computacionales 
[13]. Por ejemplo, el material mortero es utilizado, tanto en aplicaciones 
estructurales como no estructurales, junto con su disponibilidad y bajo costo, lo 
convierten en un candidato viable para simular y analizar la evolución del calor [14]. 
Esto permite explorar fenómenos asociados al comportamiento de materiales 
cementantes, además de que constituye un medio práctico y representativo para 
validar modelos físicos aplicables a sistemas más complejos. 

La novedad de este trabajo radica en la claridad de la exposición del método 
analítico comúnmente utilizado en todos los ámbitos científicos para modelar el 
calor, utilizando las herramientas de las ecuaciones diferenciales parciales en todo 
el proceso, desde la deducción—donde se desarrolla explícitamente todo el proceso 
para llegar a la ecuación del calor—, hasta la exposición de dicho método con 
ejemplos claros que describen situaciones físicas de interés en varios ámbitos del 
modelado científico. Hasta donde tenemos conocimiento, el abordar el modelado 
matemático para 3+1 dimensiones no se ha presentado en forma extensa y explícita 
anteriormente.  

En la siguiente sección se da un panorama físico para reconocer las cantidades 
fundamentales, que intervienen en la caracterización del modelo del calor así como 
su definición. En el apartado 3 se establece el principio universal de la conservación 
de la energía como el pilar esencial en la deducción del modelo. En la sección 4 se 
establecen las bases para deducir minuciosamente la ecuación del calor con la 
suficiente consistencia, se describe la situación desde el punto de vista 
tridimensional más general. Los resultados principales, a manera de consecuencia y 
ejemplos del modelo desarrollado en la sección anterior de este artículo, se exponen 
en la sección 5. Finalmente en la sección 6 se describen las conclusiones así como 
las ideas que se abordarán en un artículo posterior. 

2. Variables Macroscópicas 
La Capacidad Calorífica (C) es una medida de la resistencia de un cuerpo para 

incrementar su temperatura al suministrar calor al mismo, sin embargo, cabe 
distinguir entre lo que es temperatura y calor. El calor es una medida de la energía 
térmica, mientras que la temperatura corresponde a la medida macroscópica de un 
cuerpo de la cantidad de energía térmica acumulada en el cuerpo. En virtud de esto 
podemos definir, la capacidad calorífica como 
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𝐶 =
𝑒

𝑢
                                                                               (1) 

donde 𝑒 corresponde a la cantidad de energía térmica en Joules y u representa la 
temperatura en Kelvin en el Sistema Internacional de Unidades (SI). De la misma 
forma, la capacidad calorífica está relacionada con la cantidad de masa a la cual se le 
suministra calor. De aquí, surge el concepto de calor específico, que es la capacidad 
calorífica por unidad de masa 𝑚 (en 𝑘𝑔), 𝑐 = 𝐶/𝑚 el concepto de calor específico 
depende en gran medida de la distribución de masa en un material por lo que puede 
ser modelado con una función escalar que dependa de la posición del volumen que 
ocupa el objeto, 𝑐(𝑥⃗)  con 𝑥⃗ = (𝑥, 𝑦, 𝑧)  en coordenadas cartesianas. El calor 
específico depende también de la densidad de masa (𝜌) del material esto es, la 
cantidad de masa almacenada en ese mismo volumen (𝑚3), se define como 𝜌 = 𝑚/𝑉 
donde 𝑚 es la distribución de masa en el volumen (𝑉) a considerar [15]. 

Asimismo, el objeto puede tener una distribución de masa no uniforme por lo que 
la densidad se puede modelar con una función escalar 𝑚(𝑥⃗), si expresamos la masa 
de un cuerpo en términos de su densidad de masa se tiene 𝑚(𝑥⃗) = 𝜌(𝑥⃗)𝑉 . De lo 
anterior podemos deducir que la capacidad calorífica se puede expresar como 

𝐶(𝑥⃗) = 𝑐(𝑥⃗)𝜌(𝑥⃗)𝑉.                                                             (2) 

3. Conservación de la Energía 
La dinámica de la energía térmica dentro del objeto de interés se puede conseguir 

al estudiar la cantidad de calor que existe dentro del cuerpo y sus aportaciones 
internas como externas, para ello es necesario preservar el principio universal de la 
conservación de la energía durante un proceso evolutivo [15], [16]. De esta manera 
podemos enunciar la conservación de la energía para un sólido arbitrario en la 
forma que sigue 

𝑐𝑎𝑚𝑏𝑖𝑜𝑠 𝑒𝑛 𝑙𝑎 𝑐𝑎𝑛𝑡𝑖𝑑𝑎𝑑 𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 = 𝑓𝑙𝑢𝑗𝑜 𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑜 𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑜 

                                                                                                             +𝑓𝑢𝑒𝑛𝑡𝑒𝑠 𝑑𝑒 𝑐𝑎𝑙𝑜𝑟  

los cambios que surjan en la cantidad de energía térmica en el objeto de estudio, son 
expresados por medio de 𝜕𝑒/𝜕𝑡, que es la derivada parcial con respecto al tiempo 𝑡 
(en seg.). El flujo de calor existente que penetra o escapa en el cuerpo a través de 
una determinada sección transversal de superficie finita se modela por medio de 
una función que depende de las coordenadas espaciales 𝑥⃗ = (𝑥, 𝑦, 𝑧) y el tiempo (𝑡) 
que usualmente se denota por 𝜑(𝑥⃗, 𝑡) y está dada en unidades de cantidad de calor 
sobre unidad de tiempo sobre unidad de superficie (𝐽/𝑠𝑚2  en el SI). En último 
término pueden existir aportaciones internas de calor posiblemente por reacciones 
químicas o nucleares o de otra naturaleza, al interior del objeto, que se pueden 
modelar por medio de una función 𝑄(𝑥⃗, 𝑡) (𝐽/𝑠𝑚2 en el SI). 
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Al formular lo anterior en términos matemáticos se obtiene lo siguiente 

𝜕𝑒

𝜕𝑡
= 𝜑(𝑥⃗, 𝑡) + 𝑄(𝑥⃗, 𝑡).                                                      (3) 

4. Objeto Tridimensional 
En el caso de objetos tridimensionales comenzaremos con un sólido arbitrario y 

la evolución de la distribución del calor en el mismo. En el caso de un objeto 
arbitrario que ocupa un volumen V, se deben sumar todas las contribuciones a la 
cantidad de energía térmica total del objeto, esto se ve reflejado en la ecuación (4) 
al adquirir la forma 

𝜕

𝜕𝑡
( ∭ 𝑐(𝑥⃗)𝜌(𝑥⃗)𝑢(𝑥⃗, 𝑡)𝑑𝑉

𝑉𝑜𝑙𝑢𝑚𝑒𝑛

) = − ∯ 𝜑⃗⃗(𝑥⃗, 𝑡) ∙ 𝑑𝑆
𝐴𝑟𝑒𝑎

+              

∭ 𝑄(𝑥⃗, 𝑡)𝑑𝑉

𝑉𝑜𝑙𝑢𝑚𝑒𝑛

.                                 (4) 

Se observa que la función 𝑢(𝑥⃗, 𝑡) describe la distribución de temperatura como 
una magnitud física, macroscópicamente medible. El primer término del segundo 
miembro de la ecuación, se interpreta como el flujo de calor que ocurre a través de 

una sección transversal muy pequeña de área denotada por 𝑑𝑆. La función 𝜑⃗⃗(𝑥⃗, 𝑡) 
denominado vector de flujo calórico, ahora adquiere un carácter vectorial al 
extender el caso a tres dimensiones, por lo que es necesario hacer la proyección de 
este vector sobre el vector perpendicular (normal) a la superficie del volumen que 
ocupa el sólido, notemos que si el volumen es finito, la superficie es cerrada de ahí 
la notación en la integral [15]. También es importante notar que la normal apunta 
hacia el exterior del volumen, de esta manera los cambios de flujo en el interior del 
volumen se consideran con signo negativo. Por último, el segundo término del 
segundo miembro de la ecuación (4) representa el rastreo de las posibles fuentes de 
calor al interior del objeto. 

El primer término del segundo miembro de la ecuación (4) se puede modificar 
haciendo uso del teorema de la divergencia de Gauss [16] 

∯ 𝐴(𝑥⃗, 𝑡) ∙ 𝑑𝑆
𝐴𝑟𝑒𝑎

= ∭ 𝛻⃗⃗ ∙ 𝐴(𝑥⃗, 𝑡)𝑑𝑉

𝑉𝑜𝑙𝑢𝑚𝑒𝑛

.                                  (5) 

Siempre y cuando el cuerpo que ocupa el material sea globalmente homogéneo y 

la hipótesis de que la función vectorial 𝐴(𝑥⃗, 𝑡)  sea una función continua y 
diferenciable en el volumen que ocupa el sólido. La ecuación (4) adquiere la forma 
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𝜕

𝜕𝑡
( ∭ 𝑐(𝑥⃗)𝜌(𝑥⃗)𝑢(𝑥⃗, 𝑡)𝑑𝑉

𝑉𝑜𝑙𝑢𝑚𝑒𝑛

) = − ∭ ∇⃗⃗⃗ ∙ 𝜑⃗⃗(𝑥⃗, 𝑡)𝑑𝑉

𝑉𝑜𝑙𝑢𝑚𝑒𝑛

+  

∭ 𝑄(𝑥⃗, 𝑡)𝑑𝑉

𝑉𝑜𝑙𝑢𝑚𝑒𝑛

.                                       (6) 

Si una integral definida en un volumen arbitrario es cero, entonces su integrando 
es nulo, de donde se deduce la expresión 

𝑐(𝑥⃗)𝜌(𝑥⃗)
𝜕𝑢(𝑥⃗, 𝑡)

𝜕𝑡
= −∇⃗⃗⃗ ∙ 𝜑⃗⃗(𝑥⃗, 𝑡) + 𝑄(𝑥⃗, 𝑡)                                (7) 

que es la Ecuación del Calor (o Difusión). 

4.1. Ley del Flujo del Calor de Fourier 
Hacia 1822 Joseph Fourier postula el principio por el cual se conduce el calor a 

través de objetos metálicos bidimensionales [17], el cual es proporcional al negativo 
del gradiente de temperatura 

𝜑⃗⃗(𝑥⃗, 𝑡) = −𝐾0(𝑥⃗)∇⃗⃗⃗𝑢(𝑥⃗, 𝑡)                                                   (8) 

donde el término 𝐾0(𝑥⃗) se conoce como conductividad térmica y puede depender 
del material.  

Finalmente, al sustituir en la ecuación (8) se obtiene 

𝑐(𝑥⃗)𝜌(𝑥⃗) = ∇⃗⃗⃗ ∙ (𝐾0(𝑥⃗)∇⃗⃗⃗𝑢(𝑥⃗, 𝑡)) + 𝑄(𝑥⃗, 𝑡)                                   (9) 

esta es la ecuación del calor en su forma más general. 

En este desarrollo, podemos considerar que el material es homogéneo y uniforme 
además de isótropo por lo que la densidad de masa, el calor específico y la 
conductividad del mismo son constantes. También hemos supuesto que no existen 
fuentes de calor al interior del cuerpo, es decir, 𝑄(𝑥⃗, 𝑡) = 0 de esta forma la ecuación 
del calor se expresa como 

𝜕𝑢(𝑥⃗, 𝑡)

𝜕𝑡
= 𝑘∇2𝑢(𝑥⃗, 𝑡).                                                  (10) 

donde 𝑘 = 𝐾0/𝑐𝜌 es la Difusividad Térmica del material [15, 18]. 
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Figura 1: Un sólido rectangular ideal con las 6 caras sometidas a distintas temperaturas en el 

esquema general. 

Al usar los métodos de la Física-matemática se puede encontrar la solución a la 
ecuación (10) [15,16],[18] donde hemos considerado un prisma rectangular con 
dimensiones 𝐿 × 𝑀 × 𝑁  es decir el volumen esta delimitado en la forma 𝑉 =
{𝑥⃗ ∈ ℝ /0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝑀, 0 ≤ 𝑧 ≤ 𝑁}, observe la figura 1, de esta manera se 
tiene 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 

∑ ∑ ∑ 𝐴𝑙𝑚𝑛𝑠𝑖𝑛 (
𝑙𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑀
) 𝑠𝑖𝑛 (

𝑛𝜋𝑧

𝑁
)

∞

𝑛=0

∞

𝑚=0

∞

𝑙=0

                              (11) 

× 𝑒
−(

(𝑙𝜋)2

𝐿2 +
(𝑚𝜋)2

𝑀2 +
(𝑛𝜋)2

𝑁2 )𝛼𝑡
. 

En esta solución hemos considerado que todas las caras del rectángulo están 
aisladas, en la figura 1 basta tomar 𝑇1 = 𝑇2 = ⋯ = 𝑇6 = 0, es decir, 

𝑢(0, 𝑦, 𝑧, 𝑡) = 0         𝑢(𝐿, 𝑦, 𝑧, 𝑡) = 0 

𝑢(𝑥, 0, 𝑧, 𝑡) = 0        𝑢(𝑥, 𝑀, 𝑧, 𝑡) = 0                                   (12) 

𝑢(𝑥, 𝑦, 0, 𝑡) = 0        𝑢(𝑥, 𝑦, 𝑁, 𝑡) = 0 

Asimismo, se ha supuesto que inicialmente se tiene una distribución de 
temperatura específica 

𝑢(𝑥, 𝑦, 𝑧, 𝑡 = 0) = 𝑓(𝑥, 𝑦, 𝑧)                                                 (13) 

4.2. Caras de un prisma a temperatura constante 
Las caras de un prisma no necesariamente deben ser aisladas, en este caso se 

pueden mantener a una temperatura fija por lo que la solución a la ecuación del calor 
se modifica ligeramente, en las condiciones de frontera 
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𝑢(0, 𝑦, 𝑧, 𝑡) = 𝑇1          𝑢(𝐿, 𝑦, 𝑧, 𝑡) = 𝑇2 

𝑢(𝑥, 0, 𝑧, 𝑡) = 𝑇3        𝑢(𝑥, 𝑀, 𝑧, 𝑡) = 𝑇4                                    (14) 

𝑢(𝑥, 𝑦, 0, 𝑡) = 𝑇5        𝑢(𝑥, 𝑦, 𝑁, 𝑡) = 𝑇6 

Para encontrar una solución que satisfaga (10) junto con (14), buscamos una 
función que describa la distribución de temperaturas para el caso estacionario que 
llamaremos 𝑔(𝑥⃗) , esta función satisface  𝑔𝑡(𝑥⃗) = 0  por lo tanto, ∇2𝑔(𝑥⃗) = 0 , la 
función 𝑔(𝑥⃗) satisface la ecuación de Laplace [16,18]. La solución se propone 
entonces de la siguiente forma [15] 

𝑢(𝑥⃗, 𝑡) = 𝑣(𝑥⃗, 𝑡) + 𝑔(𝑥⃗)                                                 (15) 

donde 

𝑔(𝑥⃗) = ∑ 𝑔𝑖(𝑥⃗)

6

𝑖=1

                                                     (16) 

y cada función 𝑔𝑖(𝑥⃗)  satisface las condiciones de frontera 

𝑔1(0, 𝑦, 𝑧, 𝑡) = 𝑇1          𝑔1(𝐿, 𝑦, 𝑧, 𝑡) = 0 

𝑔1(𝑥, 𝑀, 𝑧, 𝑡) = 0          𝑔1(𝑥, 𝑀, 𝑧, 𝑡) = 0                                  (17) 

𝑔1(𝑥, 𝑦, 𝑁, 𝑡) = 0           𝑔1(𝑥, 𝑦, 𝑁, 𝑡) = 0. 

respectivamente para cada cara. En consecuencia, la función 𝑣(𝑥⃗, 𝑡)  satisface la 
ecuación del calor con las condiciones  

𝑢(0, 𝑥, 𝑦, 𝑡) = 𝑣(0, 𝑥, 𝑦, 𝑡) + 𝑔(0, 𝑥, 𝑦)                                   (18) 

por lo tanto la solución 𝑣(0, 𝑥, 𝑦, 𝑡) satisface condiciones de frontera homogéneas y 
se escribe en la forma (12), la condición inicial se calcula 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑣(𝑥, 𝑦, 𝑧, 0) + 𝑔(𝑥, 𝑦, 𝑧)                                  (19) 

o bien 

𝑓(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦, 𝑧, 0) + 𝑔(𝑥, 𝑦, 𝑧)                                    (20) 

donde los coeficientes en la expansión en serie de Fourier tridimensional [15], 
[19,20] vienen dados por 

 

 

 



Revista Ciencia Aplicada  
 Conocimiento  Multidisciplinario                ISSN:  3122-3664 

 

 

www.cienciaplicada.mx 27 

𝐴𝑙𝑚𝑛 = 

∫ ∫ ∫[𝑓(𝑥, 𝑦, 𝑧) − 𝑔(𝑥, 𝑦, 𝑧)]

𝑀

0

𝐿

0

×

𝑁

0

                                                    (21) 

𝑠𝑖𝑛 (
𝑙𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑀
) 𝑠𝑖𝑛 (

𝑛𝜋𝑧

𝑁
) 𝑑𝑥𝑑𝑦𝑑𝑧. 

5. Resultados 
En esta sección se exponen algunos casos ejemplares, en los que se ilustra la 

efectividad y validez del modelo desarrollado en la sección anterior. Se toma como 
objeto de partida un sólido tridimensional cúbico aislado, esto se establece cuando 
las condiciones de frontera son homogéneas.  El sólido es preparado inicialmente 
con 2 distribuciones de calor, que describen situaciones de interés en las 
aplicaciones. Cabe señalar que se considera un modelo cúbico, dado que en la 
práctica la mayoría de pruebas físicas realizables a un material sujeto a tensiones o 
esfuerzos mecánicos utilizan esta geometría estándar además de impresiones 
tridimensionales [21]. 

5.1 Sólido Cúbico Aislado 
Tomemos como ejemplo, el caso de un sólido cúbico aislado, para ello suponemos 

que el volumen esta delimitado en la forma 𝑉 = {𝑥⃗ ∈ ℝ /0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝑀, 0 ≤
𝑧 ≤ 𝑁}, con 𝐿 = 𝑀 = 𝑁, como en la figura 2, en este caso la expresión (11) adquiere 
la forma  

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 

∑ ∑ ∑ 𝐴𝑙𝑚𝑛𝑠𝑖𝑛 (
𝑙𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑧

𝐿
)

∞

𝑛=0

∞

𝑚=0

∞

𝑙=0

                          (22) 

× 𝑒
−(𝑙2+𝑚2+𝑛2)𝛼

𝜋2

𝐿2 𝑡
. 

Para la condición inicial 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧)                                                  (23) 

la expresión (22) adquiere la forma  

𝑓(𝑥, 𝑦, 𝑧) = 

∑ ∑ ∑ 𝐴𝑙𝑚𝑛𝑠𝑖𝑛 (
𝑙𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑧

𝐿
)

∞

𝑛=0

∞

𝑚=0

∞

𝑙=0

                              (24) 
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que es una expansión en serie tridimensional de Fourier para la función 
𝑓(𝑥, 𝑦, 𝑧) donde los coeficientes se calculan a partir de 

𝐴𝑙𝑚𝑛 = 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)
𝐿

0

𝐿

0
×

𝐿

0
                                                       (25)  

𝑠𝑖𝑛 (
𝑙𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑧

𝐿
) 𝑑𝑥𝑑𝑦𝑑𝑧 

y se mantienen las condiciones de frontera (12). 

 
Figura 2: Un sólido cúbico ideal donde las 6 caras se mantienen aisladas. 

5.1.1 Caso Lineal 

Para esclarecer las características del método desarrollado, supondremos 
primeramente que la distribución inicial se comporta de manera lineal en la 
dirección x del sólido de la figura 2. La distribución de temperatura es no uniforme 
pero lineal a lo largo del eje x, con una temperatura mínima de 26℃ en el extremo 
𝑥 = 0  m y una temperatura máxima de 90℃  grados en el extremo 𝑥 = 0.1  m, 
matemáticamente esto se expresa en la forma  

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑎0𝑥 + 𝑎1                                                         (26) 

En la ecuación (26), 𝑎0 =
62℃

0.1𝑚
 y 𝑎1 = 28℃ de tal manera que los coeficientes 

𝐴𝑙𝑚𝑛 en la ecuación 22 se calculan a partir de la expresión (23). 

En la figura 3 se puede apreciar el comportamiento evolutivo de la distribución 
inicial de temperatura para varios valores posteriores del tiempo. Es importante 
notar la distribución inicial al tiempo 𝑡 = 0 𝑚𝑖𝑛 ; se ve claramente el 
comportamiento lineal de la posición 𝑥  como función de la temperatura, en el 
extremo 𝑥 = 0 𝑚 se tiene una temperatura de 𝑇 = 26℃ y en el extremo  𝑥 = 0.1 𝑚  
se tiene el valor 𝑇 = 90℃ como temperatura máxima, La constante 𝛼 se ha tomado 

con un valor de 18 × 10−6 𝑚2

𝑚𝑖𝑛
 de acuerdo con [22]. Es importante señalar que la 
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caída abrupta en las fronteras del cubo se debe al fenómeno de Gibbs típico de las 
series de Fourier para funciones continuas por partes en el intervalo de interés [23].  

 
Figura 3: Traza de la función 𝑢(𝑥, 0.9,0.01, 𝑡) para un sólido cúbico ideal aislado con t=0,1,2…8 

minutos. 

En la figura 4 se puede apreciar un modelo tridimensional de la distribución de 
la Temperatura inicial en las coordenadas x y y para 𝑡 = 0 𝑚𝑖𝑛 𝑦 𝑧 = 0.01 𝑚  

 
Figura 4: Distribución superficial de la Temperatura para la expresión (25) con 𝑧 = 0.01 𝑚 para un 
sólido cúbico ideal donde las 6 caras se mantienen aisladas con una distribución de temperatura 

inicial lineal. 

5.1.2 Hueco Térmico 

El caso interesante para aplicaciones prácticas es aquél en que tenemos un hueco 
térmico inicial. Este hueco tiene simetría axial a lo largo del eje z y en el punto central 
del sólido cúbico la temperatura tiene un mínimo 𝑇 = 0℃   a medida que nos 
acercamos a las paredes del cubo a lo largo del eje x y el eje y la temperatura 
aumenta exponencialmente hasta un valor máximo de 90℃ justo en las caras del 
cubo. El modelo correspondiente es  

𝑢(𝑥, 𝑦, 𝑧, 0) = 90 (1 − 𝑒−
1

0.0005
((𝑥−0.05)2+(𝑦−0.05)2))                       (27) 

los coeficientes 𝐴𝑙𝑚𝑛 en la ecuación (24) se calculan a partir de la expresión (25)  
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Figura 5: Un sólido cúbico ideal donde las 6 caras se mantienen aisladas y la distribución de 
temperatura inicial tiene un hueco térmico en el punto central del cubo en (𝑥 = 0.05𝑚, 𝑦 =

0.05𝑚, 𝑧 = 0.05𝑚). 

6. Conclusiones 
En el presente trabajo se desarrolla, de manera clara y rigurosa, el modelo 

analítico de la distribución del calor en un sólido prismático. Se hace énfasis en los 
principios fundamentales de la física para la deducción de la ecuación del calor, 
empleada como marco general para modelar la distribución térmica en objetos 
tridimensionales, en particular en el caso de un cubo. Se obtiene la solución general 
para un sólido cúbico y se analizan dos casos de interés. 

En primer lugar, se considera una distribución inicial lineal en una dirección 
preferencial, correspondiente a un cubo de material expuesto en una de sus caras a 
una fuente de calor. En segundo lugar se estudia el caso de un hueco térmico 
degradado, que puede asimilarse analíticamente al de un hueco cilíndrico en el 
interior de una geometría cúbica. Este último modelo analítico puede ser de interés 
para el análisis de la distribución del calor para materiales que presentan 
perforaciones o huecos interiores en su caracterización.  

En los dos casos, al analizar la evolución temporal, se observan comportamientos 
coherentes con las predicciones del modelo de la ecuación del calor y en 
concordancia con las leyes vigentes de la termodinámica. En particular, para el caso 
del hueco térmico, se registra un incremento inicial de temperatura durante los 
primeros seis minutos de evolución, como se muestra en la figura 6, un resultado 
relevante ya que, en general, se esperaría que la temperatura dentro del sólido 
disminuyera con el tiempo. No obstante, posteriormente se aprecia una reducción 
uniforme de la temperatura en todo el cuerpo, véase la figura 5. 
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Los casos analizados se estudiaron bajo condiciones de frontera homogéneas, 
donde el objeto se mantiene aislado y libre de interacción con el entorno. El estudio 
de configuraciones con fronteras a temperatura fija, que también se aborda en el 
presente artículo, se reserva para una futura ampliación de este trabajo. 
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