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Modelacion matematica del calor en un solido cubico
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Resumen: El estudio del calor y de su propagacion en distintos medios ha sido de interés
parala comunidad cientifica desde hace varios siglos. En este trabajo se presenta, de manera
claray concisa, un esquema general para la modelacién analitica de la propagacidn del calor.
En particular, se analiza la distribucién de temperaturas en un sdélido cibico aislado
sometido a una fuente de calor constante en estado estacionario, desarrollando los modelos
correspondientes bajo las condiciones iniciales y de frontera mas comunes. Para el caso del
s6lido aislado se consideran dos escenarios representativos de distribuciones iniciales de
temperatura y se estudia su evolucién temporal.

Palabras clave: modelacién matematica; ecuacion del calor; gradiente temperatura; hueco
térmico.

1. Introduccion

El estudio del calor y otras magnitudes fisicas ha traido como consecuencia, el
desarrollo de un marco cientifico y eficaz por medio del cual se pueda reproducir
algunos fenémenos fisicos en forma controlada. La mayoria de las veces no es
posible estudiarlo de manera directa, ya que depende de varios factores sobre los
cuales no se puede tener control, y que en ocasiones quedan fuera del alcance del
experimentador [1]. Tales factores pueden ser de indole econdmica, involucrar
materiales ain no explorados, requerir condiciones ideales que no se presentan
cotidianamente, o implicar la falta de muestras especificas, entre otros. Por estas
razones, el cientifico se ve obligado a reproducir los fendmenos bajo condiciones
restringidas. Con el desarrollo de la tecnologia, hoy en dia existen diversos recursos
para lograrlo, como computadoras y software especializado [2,3].

En situaciones como las anteriormente descritas, es preciso y necesario recurrir
al concepto de modelacion [1], [4,5]. La modelacién permite reproducir un
fendmeno fisico que no puede ser estudiado de forma directa. Desde luego, siempre
representa una aproximacion a la situacién real. No obstante, aunque el modelo esta
sustentado en légica matematica y sea consistente con los modelos aceptados hasta
la fecha, la experimentacion sigue siendo el criterio que determina su validez [6-8].
Ejemplos notables de este esquema en particular en la Fisica [9] incluyen la
prediccion de la antimateria a partir de las ecuaciones de Dirac [10], las ondas
gravitacionales [11] o el bos6n de Higgs [12].

En este contexto, en el presente trabajo se propone el modelo para el estudio del
calor, que hoy en dia es un esquema bien conocido pero no con la suficiente

www.cienciaplicada.mx 20



transparencia y con la concisidad en la deduccién de sus principios fundamentales
y que sea claro de abordar.

Este marco tedrico permite ofrecer un primer acercamiento al estudio de
diversos materiales que brindan una oportunidad idénea para analizar fen6menos
fisicos complejos bajo condiciones delimitadas, considerando al calor como una de
sus caracteristicas sobresalientes. La mayoria de materiales se consideran como un
sistema multiparamétrico en el que intervienen procesos térmicos y mecdanicos,
susceptibles de ser modelados mediante métodos matematicos y computacionales
[13]. Por ejemplo, el material mortero es utilizado, tanto en aplicaciones
estructurales como no estructurales, junto con su disponibilidad y bajo costo, lo
convierten en un candidato viable para simular y analizar la evolucién del calor [14].
Esto permite explorar fendmenos asociados al comportamiento de materiales
cementantes, ademas de que constituye un medio practico y representativo para
validar modelos fisicos aplicables a sistemas mas complejos.

La novedad de este trabajo radica en la claridad de la exposicion del método
analitico comunmente utilizado en todos los dmbitos cientificos para modelar el
calor, utilizando las herramientas de las ecuaciones diferenciales parciales en todo
el proceso, desde la deduccion—donde se desarrolla explicitamente todo el proceso
para llegar a la ecuacion del calor—, hasta la exposicién de dicho método con
ejemplos claros que describen situaciones fisicas de interés en varios ambitos del
modelado cientifico. Hasta donde tenemos conocimiento, el abordar el modelado
matematico para 3+1 dimensiones no se ha presentado en forma extensa y explicita
anteriormente.

En la siguiente seccion se da un panorama fisico para reconocer las cantidades
fundamentales, que intervienen en la caracterizacion del modelo del calor asi como
su definicién. En el apartado 3 se establece el principio universal de la conservacion
de la energia como el pilar esencial en la deduccién del modelo. En la seccion 4 se
establecen las bases para deducir minuciosamente la ecuacion del calor con la
suficiente consistencia, se describe la situacion desde el punto de vista
tridimensional mas general. Los resultados principales, a manera de consecuencia y
ejemplos del modelo desarrollado en la seccion anterior de este articulo, se exponen
en la seccién 5. Finalmente en la seccion 6 se describen las conclusiones asi como
las ideas que se abordaran en un articulo posterior.

2. Variables Macroscépicas

La Capacidad Calorifica (C) es una medida de la resistencia de un cuerpo para
incrementar su temperatura al suministrar calor al mismo, sin embargo, cabe
distinguir entre lo que es temperatura y calor. El calor es una medida de la energia
térmica, mientras que la temperatura corresponde a la medida macroscépica de un
cuerpo de la cantidad de energia térmica acumulada en el cuerpo. En virtud de esto
podemos definir, la capacidad calorifica como
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C=- 1

donde e corresponde a la cantidad de energia térmica en Joules y u representa la
temperatura en Kelvin en el Sistema Internacional de Unidades (SI). De la misma
forma, la capacidad calorifica esta relacionada con la cantidad de masa a la cual se le
suministra calor. De aqui, surge el concepto de calor especifico, que es la capacidad
calorifica por unidad de masam (en kg), c = C/m el concepto de calor especifico
depende en gran medida de la distribucién de masa en un material por lo que puede
ser modelado con una funcién escalar que dependa de la posicién del volumen que
ocupa el objeto, c(¥) con X = (x,y,z) en coordenadas cartesianas. El calor
especifico depende también de la densidad de masa (p) del material esto es, la
cantidad de masa almacenada en ese mismo volumen (m3), se define como p = m/V
donde m es la distribucién de masa en el volumen (V) a considerar [15].

Asimismo, el objeto puede tener una distribucién de masa no uniforme por lo que
la densidad se puede modelar con una funcidn escalar m(X), si expresamos la masa
de un cuerpo en términos de su densidad de masa se tiene m(x) = p(¥)V. De lo
anterior podemos deducir que la capacidad calorifica se puede expresar como

C(@) = c(DpEV. (2)

3. Conservacion de la Energia

La dindmica de la energia térmica dentro del objeto de interés se puede conseguir
al estudiar la cantidad de calor que existe dentro del cuerpo y sus aportaciones
internas como externas, para ello es necesario preservar el principio universal de la
conservacioén de la energia durante un proceso evolutivo [15], [16]. De esta manera
podemos enunciar la conservacidon de la energia para un soélido arbitrario en la
forma que sigue

cambios en la cantidad de calor = flujo de calor interno o externo
+fuentes de calor

los cambios que surjan en la cantidad de energia térmica en el objeto de estudio, son
expresados por medio de de/dt, que es la derivada parcial con respecto al tiempo ¢t
(en seg.). El flujo de calor existente que penetra o escapa en el cuerpo a través de
una determinada seccion transversal de superficie finita se modela por medio de
una funcién que depende de las coordenadas espaciales X = (x,y, z) y el tiempo (t)
que usualmente se denota por ¢ (X, t) y esta dada en unidades de cantidad de calor
sobre unidad de tiempo sobre unidad de superficie (J/sm? en el SI). En tltimo
término pueden existir aportaciones internas de calor posiblemente por reacciones
quimicas o nucleares o de otra naturaleza, al interior del objeto, que se pueden
modelar por medio de una funcién Q (%, t) (J/sm? en el SI).
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Al formular lo anterior en términos matematicos se obtiene lo siguiente

de N .
5= 90 + QL. ©)

4. Objeto Tridimensional

En el caso de objetos tridimensionales comenzaremos con un sélido arbitrario y
la evolucion de la distribucién del calor en el mismo. En el caso de un objeto
arbitrario que ocupa un volumen V, se deben sumar todas las contribuciones a la
cantidad de energia térmica total del objeto, esto se ve reflejado en la ecuacion (4)
al adquirir la forma

% W c@®p@u@ t)dv =—j€£rea<ﬁ(£,t)-d§+

Volumen

Q(x,t)dV. (4)
Il

Volumen

Se observa que la funcién u(%, t) describe la distribucién de temperatura como
una magnitud fisica, macroscopicamente medible. El primer término del segundo
miembro de la ecuacidn, se interpreta como el flujo de calor que ocurre a través de

una seccion transversal muy pequefia de area denotada por dS. La funcién P(x,t)
denominado vector de flujo calérico, ahora adquiere un caracter vectorial al
extender el caso a tres dimensiones, por lo que es necesario hacer la proyeccién de
este vector sobre el vector perpendicular (normal) a la superficie del volumen que
ocupa el sélido, notemos que si el volumen es finito, la superficie es cerrada de ahi
la notacion en la integral [15]. También es importante notar que la normal apunta
hacia el exterior del volumen, de esta manera los cambios de flujo en el interior del
volumen se consideran con signo negativo. Por ultimo, el segundo término del
segundo miembro de la ecuacion (4) representa el rastreo de las posibles fuentes de
calor al interior del objeto.

El primer término del segundo miembro de la ecuacion (4) se puede modificar
haciendo uso del teorema de la divergencia de Gauss [16]

ﬁqreaﬁ(az,t)-d§: m VAR t)av. (5)

Volumen

Siempre y cuando el cuerpo que ocupa el material sea globalmente homogéneo y

la hipdtesis de que la funcién vectorial /T()'c’, t) sea una funciéon continua y
diferenciable en el volumen que ocupa el sélido. La ecuacién (4) adquiere la forma
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% fff c@pEu, av | = fﬂ V-3 Ddv +

Volumen Volumen

||| ecoav. (6)
Volumen
Si una integral definida en un volumen arbitrario es cero, entonces su integrando
es nulo, de donde se deduce la expresion

ou(x,t)

c@p(E) — ==~V §( 1) + Q& 1) ™)

que es la Ecuacion del Calor (o Difusion).

4.1. Ley del Flujo del Calor de Fourier

Hacia 1822 Joseph Fourier postula el principio por el cual se conduce el calor a
través de objetos metalicos bidimensionales [17], el cual es proporcional al negativo
del gradiente de temperatura

P 1) = —Ko(®)Vu(%, 1) (8)

donde el término K,(¥) se conoce como conductividad térmica y puede depender
del material.

Finalmente, al sustituir en la ecuacién (8) se obtiene
c@p@) = V- (KBVuE 0) + Q& 0) 9
esta es la ecuacion del calor en su forma mas general.

En este desarrollo, podemos considerar que el material es homogéneo y uniforme
ademas de isotropo por lo que la densidad de masa, el calor especifico y la
conductividad del mismo son constantes. También hemos supuesto que no existen
fuentes de calor al interior del cuerpo, es decir, Q(¥,t) = 0 de esta formala ecuacion
del calor se expresa como

ou(x,t)
at
donde k = K,/cp es la Difusividad Térmica del material [15, 18].

= kV?u(X, t). (10)
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u(x,M,z,t) = Ty
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Figura 1: Un sdlido rectangular ideal con las 6 caras sometidas a distintas temperaturas en el
esquema general.

Al usar los métodos de la Fisica-matematica se puede encontrar la solucion a la
ecuacion (10) [15,16],[18] donde hemos considerado un prisma rectangular con
dimensiones L X M X N es decir el volumen esta delimitado en la forma V =
{xeR/0<x<L0<y<M,O0<z< N}, observe la figura 1, de esta manera se
tiene

u(x,y,zt) =

i i i ApmnSin (lnx) sin (mI:/ITy) sin (%) (11)

=0 m=0n=0

(im)?  (mm)? | (nm)?
xe(LZTMZ TNZ)“t

En esta solucion hemos considerado que todas las caras del rectangulo estan
aisladas, en la figura 1 bastatomar T; =T, = .- = T¢ = 0, es decir,

u(0,y,z,t) =0 u(L,y,z,t) =0
u(x,0,z,t) =0 ulx,M,z,t) =0 (12)
u(x,y,0,t) =0 u(x,y,N,t) =0

Asimismo, se ha supuesto que inicialmente se tiene una distribucién de
temperatura especifica

u(x,y,z,t=0)=f(xy,2) (13)

4.2. Caras de un prisma a temperatura constante

Las caras de un prisma no necesariamente deben ser aisladas, en este caso se
pueden mantener a una temperatura fija por lo que la solucion a la ecuacién del calor
se modifica ligeramente, en las condiciones de frontera
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u(0,y,z,t) =T, u(L,y,z,t) =T,
u(x,0,z,t) =T; ulx,M,z,t) =T, (14)
u(x,y,0,t) =Ts u(x,y,N,t) = Tg

Para encontrar una solucién que satisfaga (10) junto con (14), buscamos una
funcién que describa la distribucién de temperaturas para el caso estacionario que
llamaremos g(¥), esta funcion satisface g¢.(X) = 0 por lo tanto, V2g(¥) =0, la
funcion g(X) satisface la ecuacién de Laplace [16,18]. La solucién se propone
entonces de la siguiente forma [15]

u(x,t) =v(xt) + gx) (15)
donde
6
9@ =) a® (16)
i=1

y cada funcién g;(X) satisface las condiciones de frontera
91(0,y,z,t) =Ty g1(L,y,z,t) =0
g1(x,M,z,t) =0 g1(x,M,z,t) =0 17)
91(x,y,N,t) =0 91(x,y,N,t) = 0.

respectivamente para cada cara. En consecuencia, la funcién v(X,t) satisface la
ecuacion del calor con las condiciones

u(0,x,y,t) =v(0,x,y,t) + g(0,x,y) (18)

por lo tanto la solucion v(0, x, y, t) satisface condiciones de frontera homogéneas y
se escribe en la forma (12), 1a condicién inicial se calcula

u(x,v,z,0) = v(x,v,2,0) + g(x,y,2) (19)
o bien

fx,y,2) =v(x,y,20)+ g(x,y,2) (20)

donde los coeficientes en la expansion en serie de Fourier tridimensional [15],
[19,20] vienen dados por

www.cienciaplicada.mx 26



Apn =

N L M

[ [ [y - gty @1)
0 0 O

l

sin (lx) sin (w) sin (%) dxdydz.

5. Resultados

En esta seccién se exponen algunos casos ejemplares, en los que se ilustra la
efectividad y validez del modelo desarrollado en la seccién anterior. Se toma como
objeto de partida un sélido tridimensional ctbico aislado, esto se establece cuando
las condiciones de frontera son homogéneas. El s6lido es preparado inicialmente
con 2 distribuciones de calor, que describen situaciones de interés en las
aplicaciones. Cabe sefialar que se considera un modelo cibico, dado que en la
practica la mayoria de pruebas fisicas realizables a un material sujeto a tensiones o
esfuerzos mecanicos utilizan esta geometria estdndar ademdas de impresiones
tridimensionales [21].

5.1 Sélido Cubico Aislado

Tomemos como ejemplo, el caso de un sélido ctibico aislado, para ello suponemos
que el volumen esta delimitado enlaformaV ={X e R/0<x <L,0<y < M,0 <
z < N},conL =M = N, como en la figura 2, en este caso la expresion (11) adquiere
la forma

u(x,y,zt) =

i i i ApnnSin (lnx) sin (mfy) sin (?) (22)

=0 m=0n=0

—(2+m? +n2)an—2t
X e L2,

Para la condicidn inicial

u(x,y,2,0) = f(x,y,2) (23)
la expresion (22) adquiere la forma
flx,y,2z) =
SRR lmx mm nmnz
Z Z Z ApmnSin ( ) sin ( L y) sin (T) (24)

=0 m=0n=0
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que es una expansion en serie tridimensional de Fourier para la funcién
f(x,y,z) donde los coeficientes se calculan a partir de

Ammn =

LI fey,2) x (25)

sin (lnTx) sin (mfy) sin (?) dxdydz

y se mantienen las condiciones de frontera (12).

y u(x,y,0,t)=0
u(x,L,z,t)=0
III
’l

—
u(0,7,2,0=0 | __ u(Ll,y,z,t)=0

S x
/, S
¢ 1
~

zZ lulxyLt)=0 ( )

Figura 2: Un sdlido cubico ideal donde las 6 caras se mantienen aisladas.

1.________. -

5.1.1 Caso Lineal

Para esclarecer las caracteristicas del método desarrollado, supondremos
primeramente que la distribucién inicial se comporta de manera lineal en la
direccion x del sélido de la figura 2. La distribucidon de temperatura es no uniforme
pero lineal a lo largo del eje x, con una temperatura minima de 26°C en el extremo
x =0 m y una temperatura maxima de 90°C grados en el extremo x = 0.1 m,
matematicamente esto se expresa en la forma

u(x,y,z,0) = agx + a; (26)

., 62°C .
En la ecuacién (26), ag = oY 4= 28°C de tal manera que los coeficientes

Ajmn €nla ecuacion 22 se calculan a partir de la expresion (23).

En la figura 3 se puede apreciar el comportamiento evolutivo de la distribucion
inicial de temperatura para varios valores posteriores del tiempo. Es importante
notar la distribucién inicial al tiempo t=0min ; se ve claramente el
comportamiento lineal de la posicion x como funciéon de la temperatura, en el
extremo x = 0 m se tiene una temperaturade T = 26°Cy en el extremo x = 0.1 m
se tiene el valor T = 90°C como temperatura maxima, La constante « se ha tomado

2
con un valor de 18 x 107° % de acuerdo con [22]. Es importante sefialar que la
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caida abrupta en las fronteras del cubo se debe al fenémeno de Gibbs tipico de las
series de Fourier para funciones continuas por partes en el intervalo de interés [23].

100 . . —

T

Tiempos
® t=0min
= t=1min
= 1=2 min
= t=3 min
® t=4min

= t=8 min

Temperatura( )

Figura 3: Traza de la funcién u(x, 0.9,0.01, t) para un sélido ctbico ideal aislado con t=0,1,2... 8
minutos.

En la figura 4 se puede apreciar un modelo tridimensional de la distribucion de
la Temperatura inicial en las coordenadas xyy parat = 0miny z = 0.01m

Temperatura [°C]

" 0.05

X [m] o 01 Y [m]
Figura 4: Distribucién superficial de la Temperatura para la expresién (25) con z = 0.01 m para un
sdlido cubico ideal donde las 6 caras se mantienen aisladas con una distribucién de temperatura
inicial lineal.

5.1.2 Hueco Térmico

El caso interesante para aplicaciones practicas es aquél en que tenemos un hueco
térmico inicial. Este hueco tiene simetria axial alo largo del eje zy en el punto central
del solido cubico la temperatura tiene un minimo T = 0°C a medida que nos
acercamos a las paredes del cubo a lo largo del eje x y el eje y la temperatura
aumenta exponencialmente hasta un valor maximo de 90°C justo en las caras del
cubo. El modelo correspondiente es

1
u(x,y,z,0) =90 (1 — e_0.0005(("_0'05)2+(y_0'05)2)) (27)

los coeficientes A;,,,, en la ecuacion (24) se calculan a partir de la expresion (25)
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100} Tiempos

= t=0 min
= t=1 min
80k t=2 min J
t=3 min
t=4 min
60+ t=5 min g
t=6 min

Temperatura(C)

t=7 min
40+

t=8 min

20}

%0.00 0.02 0.04 0.06 0.08 0.10
x(m)

Figura 5: Un sélido cubico ideal donde las 6 caras se mantienen aisladas y la distribucién de

temperatura inicial tiene un hueco térmico en el punto central del cubo en (x = 0.05m,y =

0.05m, z = 0.05m).

6. Conclusiones

En el presente trabajo se desarrolla, de manera clara y rigurosa, el modelo
analitico de la distribucion del calor en un sélido prismatico. Se hace énfasis en los
principios fundamentales de la fisica para la deduccién de la ecuacion del calor,
empleada como marco general para modelar la distribucion térmica en objetos
tridimensionales, en particular en el caso de un cubo. Se obtiene la solucién general
para un soélido cubico y se analizan dos casos de interés.

En primer lugar, se considera una distribucién inicial lineal en una direccién
preferencial, correspondiente a un cubo de material expuesto en una de sus caras a
una fuente de calor. En segundo lugar se estudia el caso de un hueco térmico
degradado, que puede asimilarse analiticamente al de un hueco cilindrico en el
interior de una geometria ctibica. Este ultimo modelo analitico puede ser de interés
para el andlisis de la distribucion del calor para materiales que presentan
perforaciones o huecos interiores en su caracterizacion.

En los dos casos, al analizar la evolucién temporal, se observan comportamientos
coherentes con las predicciones del modelo de la ecuaciéon del calor y en
concordancia con las leyes vigentes de la termodinamica. En particular, para el caso
del hueco térmico, se registra un incremento inicial de temperatura durante los
primeros seis minutos de evolucién, como se muestra en la figura 6, un resultado
relevante ya que, en general, se esperaria que la temperatura dentro del sélido
disminuyera con el tiempo. No obstante, posteriormente se aprecia una reduccion
uniforme de la temperatura en todo el cuerpo, véase la figura 5.
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Los casos analizados se estudiaron bajo condiciones de frontera homogéneas,
donde el objeto se mantiene aislado y libre de interaccion con el entorno. El estudio
de configuraciones con fronteras a temperatura fija, que también se aborda en el
presente articulo, se reserva para una futura ampliacion de este trabajo.
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