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Resumen: La detección de exoplanetas se ha convertido en un desafío esencial para la 
astrofísica contemporánea. Métodos tradicionales como el tránsito o la velocidad radial han 
permitido grandes avances, pero presentan limitaciones frente al ruido, la complejidad de 
los datos y la necesidad de análisis manual. En este artículo se presenta una revisión crítica 
de los enfoques actuales basados en aprendizaje automático, destacando el papel de 
arquitecturas como las redes convolucionales, los modelos basados en Transformer y las 
técnicas generativas. Se analizan sus aplicaciones en curvas de luz, espectros e imágenes 
astronómicas, así como sus ventajas y limitaciones. Además, se identifican brechas en la 
literatura, como la falta de interpretabilidad, la escasa generalización entre misiones y la 
subutilización de datos multimodales. Finalmente, se plantea el desarrollo de un modelo 
multimodal de aprendizaje profundo como propuesta para integrar distintas fuentes de 
datos astronómicos en un sistema único, robusto y escalable. Esta visión busca avanzar 
hacia una detección de exoplanetas más precisa, automatizada y científicamente confiable. 

Palabras clave: exoplanetas, modelo multimodal, redes neuronales, redes transformer, 
aprendizaje automático. 
 

1. Introducción  
La búsqueda de exoplanetas —planetas ubicados fuera del sistema solar— 

representa una de las líneas actuales de investigación más activas en la astrofísica 
moderna. La posibilidad de identificar mundos similares a la Tierra impulsa no solo 
el conocimiento científico, sino también el desarrollo de nuevas tecnologías. 
Misiones como Kepler y TESS han permitido la recolección de millones de curvas de 
luz con el objetivo de detectar estos cuerpos celestes mediante el método de 
tránsito, que identifica pequeñas caídas periódicas en el brillo de una estrella debido 
al paso de un planeta frente a ella [1-2]. 

No obstante, este método presenta importantes desafíos: los datos contienen 
ruido, eventos astrofísicos pueden imitar tránsitos, y el análisis manual de los 
eventos detectados es lento y propenso a errores [1,3]. Para resolver estas 
dificultades, se han propuesto enfoques automáticos basados en aprendizaje 
automático (ML, por sus siglas en inglés) y aprendizaje profundo (DL), como redes 
neuronales convolucionales (CNN) [1], algoritmos tradicionales como el gradient 
boosting [2] y visión por computadora aplicada a espectros estelares [4]. 
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Recientemente, se ha introducido el uso de arquitecturas tipo Transformer, 
capaces de capturar relaciones temporales en secuencias sin la necesidad de apilar 
múltiples capas, lo que mejora la eficiencia y ayuda a la interpretabilidad gracias a 
los mapas de atención [1]. Por otro lado, también se ha explorado el uso de modelos 
simples como la regresión logística aplicada a imágenes astronómicas, lo cual ha 
mostrado mejoras notables en la detección de planetas poco brillantes sin 
incrementar la tasa de falsos positivos [5]. 

Una de las principales limitaciones ha sido la falta de generalización y la 
dependencia de representaciones específicas, como el “folding” de curvas de luz y la 
escasa integración de datos multimodales como imágenes, espectros y series 
temporales [2-3]. En este sentido, el desarrollo de bases de datos estandarizadas 
como The Multimodal Universe [6] abre la posibilidad de trabajar con datos de 
diferentes modalidades en un mismo entorno, lo que facilita el entrenamiento de 
modelos más robustos y generalizables. 

Este trabajo plantea una revisión general de los enfoques actuales en la detección 
de exoplanetas mediante aprendizaje automático, identifica las brechas persistentes 
en la literatura, y argumenta cómo nuevas estrategias basadas en modelos 
interpretables pueden ofrecer una mejora sustancial en la localización y 
clasificación automática de exoplanetas. 

2. Métodos de detección de exoplanetas 
La detección de exoplanetas se basa en métodos tanto directos como indirectos, 

cada uno con ventajas y limitaciones propias. Los métodos indirectos, como el 
tránsito y la velocidad radial (radial velocity, RV), han sido responsables de la 
mayoría de los descubrimientos confirmados hasta la fecha [1]. Por otro lado, 
métodos directos, como la imagen de alto contraste, permiten caracterizar 
propiedades físicas de los planetas, aunque son técnicamente más exigentes. 

2.1 Método de tránsito 
El método de tránsito se basa en detectar pequeñas disminuciones periódicas en 

el brillo de una estrella cuando un planeta pasa frente a ella desde nuestra 
perspectiva. La Figura 1 muestra un ejemplo de esta técnica, presentando la curva 
de luz observada para la estrella KIC 6922244, donde se aprecian caídas de flujo que 
sugieren posibles tránsitos planetarios. (esta investigación hizo uso de Lightkurve, 
una librería de Python para análisis de datos de Kepler y TESS Lightkurve 
Collaboration, 2018). Esta caída de flujo es proporcional al área del planeta respecto 
al área de la estrella [1]. Para facilitar el análisis y destacar las señales débiles, el 
flujo se somete a un proceso de normalización. Una vez normalizada, como se 
observa en la Figura 2 para la misma estrella, KIC 6922244, los tránsitos se 
distinguen con mayor claridad de las variaciones estelares de fondo. La técnica 
requiere fotometría de alta precisión y un alineamiento orbital favorable. Su 
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principal ventaja es que permite estimar el radio del planeta y, si se combina con 
velocidad radial, su densidad.  

 
Figura 1. Curva de luz observada para la estrella KIC 6922244 sin normalización. Se aprecian caídas de 

flujo periódicas que podrían corresponder a tránsitos planetarios. 

Este método ha sido potenciado por el uso de inteligencia artificial. Malik et al. [2] 
aplicaron el algoritmo LightGBM sobre curvas de luz procesadas con TSFRESH, 
logrando métricas comparables a las de redes profundas con menor costo 
computacional. Prasad et al. [3], por su parte, utilizaron el algoritmo Box Least 
Squares (BLS) como paso previo a la clasificación de curvas de luz mediante redes 
neuronales.  

 
Figura 2. Curva de luz normalizada de la estrella KIC 6922244, donde se destacan con mayor claridad 

los posibles tránsitos. 

2.2 Velocidad radial 
El método Velocidad Radial (RV) mide el desplazamiento Doppler de las líneas 

espectrales de una estrella inducido por el tirón gravitacional de un planeta 
orbitante [1]. Es particularmente efectivo para detectar planetas masivos cercanos 
a la estrella y no depende del alineamiento orbital como el tránsito. 
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Mignon et al. [4] realizaron un análisis homogéneo de 200 enanas M usando el 
espectrógrafo HARPS, confirmando su sensibilidad para detectar planetas de baja 
masa en zonas habitables. En paralelo, Gan y Rajpaul [5] propusieron un enfoque 
novedoso basado en visión por computadora para extraer señales de RV 
directamente de espectros, evitando la dependencia del método clásico de 
correlación cruzada. Este método logró resultados comparables a los estándares de 
la industria en menor tiempo de cómputo. 

2.3 Imagen directa (Direct Imaging) 
La imagen directa busca observar al planeta separando su débil luz de la brillante 

emisión estelar. Este método es fundamental para caracterizar atmósferas y órbitas, 
pero presenta grandes retos debido al contraste extremo de brillo entre la estrella y 
el planeta [1]. Se requieren técnicas ópticas avanzadas como óptica adaptativa, así 
como procesamiento intensivo de imágenes. 

Daglayan et al. [6] propusieron el algoritmo AMAT, que mejora las técnicas 
clásicas de sustracción de la función de dispersión puntual (PSF) utilizando un 
enfoque iterativo basado en minimización L1/L2 y modelos de baja complejidad. En 
la misma línea, Cambazard et al. [7] aplicaron regresión logística sobre imágenes 
preprocesadas, logrando una detección más eficiente de señales planetarias débiles 
sin aumentar los falsos positivos. Flasseur et al. [8] integraron datos 
multiespectrales con CNN, superando algoritmos clásicos al aprovechar la 
diversidad espectral y espacial de los datos. 

2.4 Enfoques complementarios y emergentes 
El uso de datos sintéticos generados por redes generativas representa una 

innovación relevante. El estudio AstroFusion de Suresh et al. [9] mostró que modelos 
entrenados con datos sintéticos alcanzan precisión comparable a modelos 
entrenados con datos reales. Al combinar ambos conjuntos, se logró mejorar la tasa 
de aciertos en hasta un 96 % para Random Forests. 

Finalmente, Angeloudi et al. [10] propusieron The Multimodal Universe, un 
conjunto de datos de más de 100 TB que integra imágenes, espectros y series 
temporales en un formato estandarizado y escalable para aprendizaje automático. 
Esta iniciativa permite trabajar con datos heterogéneos de múltiples observatorios 
y es clave para el desarrollo de modelos más robustos y generalizables. 

3. Descubrimiento de exoplanetas con aprendizaje automático 
El uso de aprendizaje automático ha dado lugar a avances significativos en la 

detección de exoplanetas, especialmente al abordar las limitaciones de los métodos 
tradicionales. A continuación, se presentan algunos de los enfoques más relevantes 
y representativos. 

3.1 Modelo PANOPTICON: detección sin filtrado previo 
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PANOPTICON, una arquitectura basada en U-Net, permite detectar tránsitos 
planetarios únicos en curvas de luz sin necesidad de filtrado previo [7]. Entrenado 
con datos simulados de la misión PLATO, el modelo alcanzó una tasa de acierto del 
90 % incluso en señales de bajo contraste, demostrando una notable capacidad para 
reconocer eventos difíciles de identificar con métodos clásicos. 

3.2 MAC-Net: clasificación multimodal de objetos celestes 
MAC-Net es una red neuronal que combina espectros bidimensionales e 

imágenes del SDSS para clasificar estrellas, galaxias y cuásares [8]. Esta integración 
de entradas multimodales permitió alcanzar una precisión del 98.6 %, superando 
enfoques basados exclusivamente en espectros unidimensionales. 

3.3 Modelos con GANs: generación de datos sintéticos 
AstroFusion aplica redes generativas adversarias (GANs) para crear datos 

sintéticos de tránsitos, lo que permite entrenar modelos con más variabilidad y 
robustez [9]. Al mezclar datos simulados y reales, se logró aumentar la precisión de 
modelos como Random Forest sin comprometer la confiabilidad de las detecciones. 

3.4 Transformers para señales de tránsito 
El uso de modelos Transformer ha demostrado gran potencial para la 

clasificación de curvas de luz, permitiendo distinguir entre eventos reales y falsos 
positivos sin necesidad de preprocesamiento complejo ni extracción manual de 
características [1]. 

3.5 LightGBM con extracción automática de características 
Una alternativa más eficiente al uso de redes profundas es el enfoque propuesto 

por Malik et al., que aplica LightGBM sobre características generadas 
automáticamente mediante TSFRESH [2]. Esta estrategia ofrece resultados 
competitivos con un menor costo computacional y una mayor interpretabilidad. 

4. Ventajas y limitaciones de los enfoques actuales 
El aprendizaje automático ha demostrado ser una herramienta poderosa en la 

detección de exoplanetas, ofreciendo avances significativos en eficiencia, precisión 
y adaptabilidad. La Figura 3, por ejemplo, ilustra el rendimiento de un modelo típico, 
mostrando la precisión alcanzada en los conjuntos de entrenamiento y validación. 
En el contexto de las redes neuronales, el eje X de esta figura representa la época, 
que es un recorrido completo del conjunto de datos de entrenamiento a través del 
algoritmo de aprendizaje. No obstante, estos modelos también presentan 
limitaciones técnicas y científicas que es importante considerar. 
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Figura 3. Precisión en el conjunto de entrenamiento y validación durante el entrenamiento del 

modelo. Se observa una rápida convergencia tras la tercera época. 

4.1 Ventajas principales 
Las principales ventajas de la aplicación de los enfoques de aprendizaje 

automático en la detección de exoplanetas radican en su capacidad para manejar la 
complejidad y el volumen de los datos astronómicos. Estos beneficios se manifiestan 
en la mejora de la velocidad de procesamiento, la sensibilidad de detección y la 
robustez del análisis, superando varias de las limitaciones inherentes a los métodos 
tradicionales detallados a continuación:  

 Escalabilidad y velocidad de inferencia. Modelos como PANOPTICON pueden 
analizar curvas de luz completas en menos de 0.2 segundos, lo que permite 
procesar grandes volúmenes de datos de manera eficiente [7]. 

 Detección de señales débiles y eventos únicos. A diferencia de métodos 
clásicos que dependen de periodicidad o filtrado previo, PANOPTICON 
permite detectar tránsitos únicos, incluyendo aquellos largos o poco 
profundos, con alta sensibilidad y baja tasa de falsos positivos [7]. 

 Fusión de datos multimodales. Redes como MAC-Net combinan espectros 
bidimensionales e imágenes para mejorar la clasificación de objetos, 
superando enfoques tradicionales basados en entradas unidimensionales 
[8]. 

 Robustez frente al ruido. Gracias a arquitecturas como U-Net, los modelos 
actuales pueden extraer características en presencia de ruido estelar, rayos 
cósmicos y variaciones de fondo [7]. 

 Uso de datos sintéticos. El modelo AstroFusion demostró que la generación 
de datos sintéticos con GANs puede complementar eficazmente los conjuntos 
de datos reales, mejorando la tasa de aciertos sin comprometer la precisión 
[9]. 

4.2 Limitaciones y desafíos actuales 
A pesar de los avances que ofrece el aprendizaje automático en la astrofísica, su 

aplicación práctica se enfrenta a importantes obstáculos. Las limitaciones actuales 
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se centran principalmente en aspectos como la fiabilidad, la dependencia de los 
datos, la robustez entre diferentes fuentes de información y la accesibilidad, 
planteando desafíos que la investigación en el área debe superar: 

 Falta de interpretabilidad. Muchos modelos de redes profundas funcionan como 
cajas negras, lo que dificulta su validación científica. 

 Dependencia de datos bien etiquetados. Modelos como los basados en CNN o 
LightGBM requieren conjuntos de datos etiquetados, balanceados y 
representativos [2]. 

 Sensibilidad a la calidad de entrada. Aunque MAC-Net y otros modelos 
multimodales han demostrado rendimiento alto, su precisión depende en gran 
medida de la calidad y homogeneidad de los datos de entrada [8]. 

 Generalización entre misiones. Modelos entrenados con datos de misiones 
específicas como TESS, LAMOST o PLATO pueden no generalizar bien a otros 
instrumentos sin reentrenamiento, debido a diferencias en resolución, ruido o 
formato [1]. 

 Costo computacional en entrenamiento. Aunque la inferencia es rápida, el 
entrenamiento de estos modelos profundos requiere recursos computacionales 
significativos y tiempos prolongados, como se observó en PANOPTICON [7]. 

5. Oportunidades y desafíos futuros 
El uso de aprendizaje automático para la detección de exoplanetas aún se 

encuentra en expansión, con múltiples áreas en desarrollo que ofrecen 
oportunidades concretas para mejorar los métodos actuales, pero también plantean 
desafíos técnicos y metodológicos como los que a continuación se mencionan. 

5.1 Aprovechamiento de datos multimodales 
La astronomía moderna genera datos en múltiples formatos: curvas de luz, 

espectros, imágenes multibanda y catálogos. Iniciativas como The Multimodal 
Universe están abriendo el camino hacia modelos capaces de aprender 
simultáneamente de distintas fuentes, integrando patrones temporales, espectrales 
y espaciales [6]. El reto está en diseñar arquitecturas que aprovechen esta 
diversidad sin volverse inestables ni excesivamente costosas. Modelos 
multimodales también deben resolver cómo sincronizar diferentes resoluciones 
temporales y espaciales sin perder información crítica [10]. 

5.2 Estándares para entrenamiento y validación 
Aún no existe un consenso sobre benchmarks estándar ni sobre la forma óptima 

de validar modelos de detección de exoplanetas. Muchos trabajos usan datasets 
simulados o propios, lo que dificulta la comparación directa entre enfoques. La 
creación de bases de datos públicas, bien etiquetadas y representativas es crucial 
para establecer una base común que permita evaluar avances de forma transparente 
y reproducible. En este contexto, algunos estudios proponen combinar datos reales 
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con datos sintéticos generados por GANs o simuladores físicos para aumentar la 
robustez de los modelos y mejorar su capacidad de generalización [12]. 

5.3 Interpretabilidad y confianza en los resultados 
Uno de los principales obstáculos para una adopción más amplia en la comunidad 

científica es la falta de interpretabilidad. Modelos complejos como Transformers o 
GANs pueden ofrecer alta precisión, pero sus decisiones no siempre son 
comprensibles para los astrónomos. Se requieren herramientas de interpretación y 
visualización que permitan entender cómo el modelo llegó a una conclusión, 
especialmente en detecciones sin precedentes. Propuestas recientes sugieren el uso 
de explicabilidad post-hoc mediante técnicas como LIME o SHAP para apoyar la 
interpretación de las decisiones del modelo [10]. 

5.4 Transferencia entre misiones e instrumentos 
La capacidad de adaptar modelos a nuevos instrumentos (como el telescopio 

James Webb, TESS, o futuras misiones como ARIEL) es esencial. Hoy, muchos 
modelos tienen que ser reentrenados desde cero con los datos de cada misión, lo 
cual es ineficiente. Una oportunidad está en aplicar técnicas de transfer learning o 
entrenamiento contrastivo para facilitar la reutilización de modelos previamente 
entrenados. Además, se ha señalado que la calibración de modelos en dominios con 
distintas características estadísticas, por ejemplo en señales espectroscópicas 
multivariadas, puede beneficiarse del uso de reducción de dimensionalidad antes de 
aplicar técnicas de detección de anomalías [11]. 

6. Conclusiones 
El aprendizaje automático ha demostrado ser una herramienta útil y cada vez 

más robusta para enfrentar los retos en la detección de exoplanetas, desde la 
clasificación de tránsitos hasta el análisis de señales espectrales e imágenes 
multibanda. Modelos como PANOPTICON, MAC-Net o AstroFusion evidencian que 
es posible aumentar la sensibilidad y precisión al integrar arquitecturas modernas 
y estrategias de fusión de datos. 

En este contexto, la presente investigación se vincula directamente con estas 
tendencias, al centrarse en el diseño y la validación de un modelo multimodal de 
aprendizaje profundo para la detección de exoplanetas. Este enfoque busca integrar 
múltiples fuentes de datos astronómicos en una sola arquitectura, maximizando la 
capacidad de detección y reduciendo los falsos positivos. Con ello, se espera 
contribuir a un campo que evoluciona rápidamente, pero que aún requiere 
soluciones más generales, interpretables y adaptables a nuevas misiones espaciales. 
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