
Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 23

Comparación y estudio del desempeño de dos sistemas

embebidos en FPGA

Abimael Jiménez1, Gehová López-González2, Omar Aguilar Loreto3

1Departamento de Ingeniería Eléctrica y Computación de la Universidad Autónoma de Ciudad Juárez, Av. De

Charro 450, Juárez, Chihuahua México
2,3Departamento de Ingeniería, Universidad de Guadalajara, Av. Revolución 151, Autlán, Jalisco, México

Resumen: Los sistemas embebidos con FPGA (Field Programmable Gate Arrays) son
utilizados en muchas aplicaciones en áreas de comunicaciones, automotriz, biomédica y
aeroespacial debido a sus ventajas de reconfiguración de hardware y paralelismo. En este
trabajo se presenta un análisis de desempeño de dos sistemas embebidos implementados
en la tarjeta Basys 3, la cual contiene un FPGA Artix-7. En ambos sistemas se desarrolló el
software, el cual integra una aplicación y controladores de los módulos de hardware. En la
parte de hardware un diseño fue implementado con módulos de propiedad intelectual y
otro con módulos desarrollados en lenguaje de descripción de hardware. Este último
presentó el mejor desempeño al utilizar solo el 3.37% de los bloques lógicos disponibles del
FPGA Artix-7 y un consumo de potencia de 0.106 W.

Palabras clave: sistema embebido, VHDL, diseño de harware, desarrollo de software,
desempeño.

1. Introducción
En la actualidad, los sistemas embebidos en FPGA (Field Programmable Gate

Arrays) representan una solución eficiente y flexible para aplicaciones que
requieren procesamiento en tiempo real, bajo consumo de energía y personalización
a nivel de hardware. Estas características proporcionan una solución intermedia
entre los ASICs (Application-Specific Integrated Circuits) y los procesadores de
propósito general.

Gracias a la integración de procesadores soft como Miicrobalaze [1] y Nios V [2],
implementados en HDL (Hardware Description Language), y procesadores físicos
como ARM Cortex, desarrollado en nodos tecnológicos desde los 180 nm [3]; es
posible el diseño de sistemas embebidos heterogéneos que combinan lógica
programable con procesamiento convencional. Esta arquitectura híbrida ha
impulsado su adopción en áreas como visión por computadora, robótica,
comunicaciones y sistemas IoT (Internet of Things), donde la capacidad de
paralelismo y la adaptabilidad de los FPGAs ofrecen ventajas significativas frente a
plataformas tradicionales [4–7].

El diseño de un sistema embebido en FPGA implica el desarrollo de hardware y
software. Respecto al hardware, las plataformas de diseño como Vivado [8] y

Primer Volumen

Recibido: mayo 12, 2025

Aceptado: mayo 24, 2025

autor de correspondencia:
abimael.jimenez@uacj.mx

© 2025 Revista Ciencia Aplicada

A
rt

íc
u

lo

C
ie

n
tí

fi
co

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 24

Quartus [9] contienen diferentes módulos de propiedad intelectual (PI), algunos de
uso gratuito y otros a través de licencias. La mayoría de los sistemas embebidos con
FPGA integran módulos de PI, simplificación de la etapa diseño. Por otro lado, es
posible desarrollar sistemas embebidos sin utilizar módulos de PI. Sin embargo, esto
implica un conocimiento avanzado de HDLs como VHDL [10] y Verilog [11]. Por otra
parte, el software del sistema embebido se puede implementar en RiscFree IDE y
Vitis para FPGAs de Intel y AMD, respectivamente [12,13].

En este trabajo se presenta un estudio del desempeño de sistemas embebidos en
FPGA a través del diseño de dos sistemas embebidos mínimos, el primero se diseñó
con módulos PI de AMD y en el segundo utiliza módulos de hardware en VHDL.
Ambos sistemas embebidos fueron evaluados utilizando la misma aplicación de
software y se implementaron en el mismo FPGA.

2. Metodología
Los sistemas embebidos analizados en este trabajo se diseñaron con las

herramientas de diseño Vivado Desing Suit y Vitis 2020.2 para el desarrollo de
hardware y software, respectivamente [8]. Los dos sistemas se implementaron en la
tarjeta de desarrollo Basys 3 de Digilent, la cual contiene el FPGA Artix-7 de AMD
[14]. Ambos sistemas utilizaron los módulos de hardware del procesador soft
Microblaze, el módulo UART (Universal Asynchronous Receiver-Transmitter) y el
módulo GPIO (General Purpose Input/Output). Finalmente, en ambos sistemas se
implementaron los drivers correspondientes para cada módulo o periférico y se
ejecutó la misma aplicación de software. La única diferencia radica en que el sistema
system-ip utilizó módulos de PI de AMD y el sistema system-hdl utilizó módulos de
hardware desarrollados en VHDL.

2.1 Diseño de hardware

El diseño system-ip se integró con los módulos PI del procesador soft Microblaze,
el módulo AXI-UART (Advanced eXtensible Interface - Universal Asynchronous
Receiver-Transmitter) y el módulo GPIO como se observa en las Figuras 1 y 2.
También se observa que en el diseño aparecen más módulos de hardware, los cuales
son agregados automáticamente por la herramienta de Vivado al realizar la
automatización de interconexión.

Figura 1. Módulo principal del sistema embebido system-ip implementado en Vivado.

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 25

Figura 2. Arquitectura de system-ip en Vivado con los módulos UART, Microblaze y GPIO en

recuadros azul, rojo y morado, respectivamente.

En las Figuras 3 y 4 se muestra la arquitectura del diseño system-hdl. Este sistema
se implementó con el procesador soft Microblaze (CPU en recuadro rojo de la Figura
3), y los módulos UART, GPO, y GPI como se muestra en los recuadros azul, rojo y
morado de la Figura 4, respectivamente. Se observa que en este diseño los módulos
GPO y GPI están separados en dos módulos en vez de un solo módulo GPIO. Todos
los módulos del diseño system-hdl, a excepción del procesador, están desarrollados
en VHDL y se tomaron del sistema Vanilla [14]. En ambos sistemas el procesador
Microblaze se configuró con 128 kb de memoria RAM y una frecuencia de reloj de
100 MHz.

Figura 3. Módulo principal del sistema embebido system-hdl con los módulos chu_mcs_bridge, cpu
(Microblaze) y mmio_sys_vanilla en recuadros azul, rojo y morado, respectivamente.

Después de agregar las fuentes de los módulos de hardware de cada sistema y su
respectivo archivo de distribución de pines de la tarjeta Basys 3, se realizó el proceso
de síntesis y generación del archivo .bit (bitstream) para programar el hardware en
el FPGA Artix-7. Finalmente, se exportó el hardware de ambos sistemas, archivo .xsa
(Xilinx Support Archive) que describe la plataforma de hardware.

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 26

Figura 4. Arquitectura de system-hdl con los módulos UART, GPI y GPO en recuadros azul, rojo y

morado, respectivamente.

2.2 Diseño de software

El diseño de software se realizó de acuerdo con el diagrama de flujo de la Figura
5a. El primer paso fue la creación de un espacio de trabajo en Vitis. Posteriormente,
se creó la plataforma, importando la plataforma de hardware (archivo .xsa) que se
exportó en Vivado; la cual es una combinación de componentes de hardware y
componentes de software (dominios/Board Support Package (BSP), etc.). A
continuación, se generó el BSP, que proporciona el soporte básico para la plataforma

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 27

de hardware, facilitando la inicialización del sistema al encenderse y permitiendo la
ejecución del programa de aplicación.

En ambos sistemas se empleó un BSP tipo autónomo que ofrece una capa de
software sencilla y de bajo nivel. Esta configuración brinda acceso directo a las
funciones básicas del procesador sin necesidad de un sistema operativo, como se
observa en la Figura 5a.

Después, se implementaron los controladores para los módulos de hardware
UART, GPO y GPI como se observa en la Figura 5b. En el diseño system-ip, estos
controladores se desarrollaron a partir de las bibliotecas disponibles para cada
módulo de PI. En cambio, en el diseño system-hdl, se utilizaron los controladores
desarrollados en el sistema Vanilla [14].

Figura 5. a) Diagrama de flujo para desarrollar el software de los diseños. b) Capas que integran el

software.

Posteriormente, se desarrolló el programa de aplicación en C++ que contiene un
ciclo infinito con el que inicia el sistema, interactuando con cada módulo de
hardware y el procesador. Las rutinas que incluye la aplicación son el parpadeo de
todos los LEDs cinco veces cada segundo, el encendido de los LEDs uno por uno cada
segundo y el envío de mensajes a través de UART. Tras ello, el software se compiló
en Vitis, generando el archivo ejecutable (.elf), el cual se carga en la memoria RAM
del procesador MicroBlaze de ambos diseños. Esta carga se realizó desde Vivado,
asociando el archivo (.elf) con la arquitectura de hardware correspondiente.

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 28

Finalmente, se regeneró el bitstream en Vivado, integrando tanto el hardware
como el software, para programar el FPGA Artix-7 como se observa en la Figura 5a.
Para verificar el correcto funcionamiento de ambos sistemas, se utilizó una conexión
serial mediante la herramienta PuTTY, lo que permitió visualizar mensajes, así como
depurar y optimizar el software.

3. Resultados
En esta sección se presentan los resultados obtenidos de la implementación de

ambos diseños y se realiza un análisis comparativo del desempeño y los recursos
utilizados.

En la Figura 6 se puede observar que el diseño system-ip utiliza la mayor cantidad
de recursos. El diseño utilizó 6.96 % de los CLBs (Configurable Logic Blocks)
disponibles en el FPGA Artix 7 donde la mayoría de los elementos fueron LUTs
(Look-Up Tables); y principalmente, se utilizaron para el diseño de circuitos lógicos
con un 6.38 % y solo el 1.44 % de las LUTS se utilizó como memoria. Por su parte el
diseño system-hdl utiliza la menor cantidad de recursos, a excepción de los bloques
IOB (Input/Output Block) y multiplexores. Esto se debe a que el sistema Vanilla [14]
está preconfigurado para integrar hasta 64 módulos de hardware como se observa
en la Figura 4. En los registros de estos módulos, el procesador puede escribir y leer
datos a través de un decodificar 6 a 64 y un multiplexor 64 a 1, respectivamente.

Figura 6. Comparación de los recursos de hardware utilizados en los diseños system-ip y system hdl.

En la Figura 7 se muestra el consumo de potencia de ambos sistemas. El consumo
de potencia total de cada diseño está definido por

𝑃 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (1)

donde 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 representa el consumo de potencia estática y 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 es la potencia

dinámica. Las dos contribuciones más importantes de la potencia estática son la
potencia consumida cuando los transistores están completamente apagados o

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 29

encendidos y la debida a corrientes de fuga. La potencia dinámica tiene tres
contribuciones importantes, la frecuencia del sistema, la capacitancia de carga y el
voltaje de alimentación; por lo tanto, está relacionada con la velocidad de
conmutación (encendido / apagado) de los transistores.

Figura 7. Comparación del consumo de potencia en los diseños system-ip y system hdl.

En la Figura 7 se observa que el consumo de potencia total para el diseño system-
ip fue de 0.206 W; mientras que, para el diseño system-hdl fue de 0.106 W. También
se observa que el consumo de potencia dinámico es mayor en el diseño system-ip
con 0.133 W contra solo 0.033 W en el diseño system-hdl. El 79 % de la potencia
dinámica del diseño system-ip se consume en el módulo MMCM (Mixed-Mode Clock
Manager). Este módulo es una fuente de señales de reloj para FPGAs y sistemas
embebidos de AMD que se utiliza para generar múltiples señales de reloj con varias
relaciones de frecuencia y fase a partir de una sola señal de reloj de entrada. Este
módulo es principalmente utilizado por el protocolo AXI (Advanced eXtensible
Interface).

4. Conclusiones
Los diseños system-ip y system-hdl se desarrollaron satisfactoriamente. El

diseño system-hdl utilizó la menor cantidad de recursos de un FPGA Artix-7 y el
menor consumo de potencia. Esto plantea la posibilidad de desarrollar sistemas
embebidos más complejos en FPGAs más económicos y pequeños; utilizando
módulos de hardware en VHDL en lugar de módulos de PI de AMD. Como trabajo a
futuro se continuarán agregando módulos de hardware a estos sistemas con la
finalidad de determinar si esta tendencia se mantiene o cambia al tener sistemas
embebidos más grandes y con mayores requerimientos.

Referencias

1. “AMD MicroBlaze™ Processor”, AMD, Accedido: Abr. 25, 2025. [Link]

2. “Nios® V Processor”, Intel, Accedido: Abr. 25, 2025. [Link]

3. “Bringing the benefits of Cortex-M processors to FPGA“, AMD, Accedido: Abr. 25, 2025. [Link]

https://www.amd.com/es/products/software/%20adaptive-socs-and-fpgas/microblaze.html
https://www.intel.com/content/www/us/en/products/%20details/fpga/intellectual-property/processors-peripherals/niosv.html
https://www.xilinx.com/publications/events/developer-forum/2018-frankfurt/bringing-the-benefits-of-cortex-m-processors-to-fpga.pdf

Revista Ciencia Aplicada
 Conocimiento Multidisciplinario ISSN: 3122-3664

www.cienciaplicada.mx 30

4. Magwervyari A and Chen Y., “Review of State-of-the-Art FPGA Applications in IoT Networks”.

Sensors, vol. 22, no. 19, pp. 7496, 2022. https://doi.org/10.3390/s22197496

5. Khan MI and da Silva B., “Harnessing FPGA technology for energy-efficient wearable medical

devices”. Electronics. Vol. 13, no. 20, pp. 4094, 2024.

https://doi.org/10.3390/electronics13204094

6. Su, X. and Zuo, G., “Computer Artificial Vision Image Processing System Based on FPGA”, en

International Conference on Cognitive based Information Processing and Applications (CIPA

2021), J. Jansen, B., Liang, H., Ye, J., Eds., Springer, Singapore, cap. 85. pp. 194-201, 2021.

https://doi.org/10.1007/978-981-16-5854-9_24

7. Machado, F., Nieto, R., Fernández-Conde, J., Lobato, D. and José M. Cañas, “Vision-based robotics

using open FPGAs”, Microprocessors and Microsystems, Vol. 103, pp. 104974, 2023.

https://doi.org/10.1016/j.micpro.2023.104974

8. “AMD Vivado™ Design Suite”, AMD, Accedido: Abr. 25, 2025. [Link]

9. “Software de diseño Quartus® Prime”, Intel, Accedido: Abr. 25, 2025. [Link]

10. "IEEE Standard for VHDL Language Reference Manual", IEEE, pp. 1-673, 2019.

https://doi.org/10.1109/IEEESTD.2019.8938196

11. IEEE Standard for Verilog Hardware Description Language, IEEE, pp. 1-590, 2006.

https://doi.org/10.1109/IEEESTD.2006.99495

12. “Nios® V Embedded Processor Design Handbook”, Intel, Accedido Mayo 16, 2025. [Link]

13. “Plataforma de software unificada AMD Vitis”, AMD, Accedido Mayo 16, 2025. [Link]

14. “FPGA AMD Artix™ 7”, AMD, Accedido Mayo 16, 2025. [Link]

15. P. Chu, FPGA Prototyping by VHDL Examples: Xilinx MicroBlaze MCS SoC, 2ed, Wiley, 2017.

https://doi.org/10.3390/electronics13204094
https://doi.org/10.1007/978-981-16-5854-9_24
https://doi.org/10.1016/j.micpro.2023.104974
https://www.amd.com/es/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.intel.la/content/www/xl/es/products/details/fpga/development-tools/quartus-prime.html
https://doi.org/10.1109/IEEESTD.2019.8938196
https://doi.org/10.1109/IEEESTD.2019.8938196
https://www.intel.com/content/www/us/en/docs/programmable/726952/23-3/intel-fpga-embedded-development-tools.html
https://www.amd.com/es/products/software/adaptive-socs-and-fpgas/vitis.html
https://www.amd.com/es/products/adaptive-socs-and-fpgas/fpga/artix-7.html

